3 research outputs found

    Significant medical image compression techniques: a review

    Get PDF
    Telemedicine applications allow the patient and doctor to communicate with each other through network services. Several medical image compression techniques have been suggested by researchers in the past years. This review paper offers a comparison of the algorithms and the performance by analysing three factors that influence the choice of compression algorithm, which are image quality, compression ratio, and compression speed. The results of previous research have shown that there is a need for effective algorithms for medical imaging without data loss, which is why the lossless compression process is used to compress medical records. Lossless compression, however, has minimal compression ratio efficiency. The way to get the optimum compression ratio is by segmentation of the image into region of interest (ROI) and non-ROI zones, where the power and time needed can be minimised due to the smaller scale. Recently, several researchers have been attempting to create hybrid compression algorithms by integrating different compression techniques to increase the efficiency of compression algorithms

    Speech signal compression and encryption based on sudoku, fuzzy C-means and threefish cipher

    Get PDF
    Compression and encryption of speech signals are essential multimedia technologies. In the field of speech, these technologies are needed to meet the security and confidentiality of information requirements for transferring huge speech signals via a network, and for decreasing storage space for rapid retrieval. In this paper, we propose an algorithm that includes hybrid transformation in order to analyses the speech signal frequencies. The speech signal is then compressed, after removing low and less intense frequencies, to produce a well compressed speech signal and ensure the quality of the speech. The resulting compressed speech is then used as an input in a scrambling algorithm that was proposed on two levels. One of these is an external scramble that works on mixing up the segments of speech that were divided using Fuzzy C-Means and changing their locations. The internal scramble scatters the values of each block internally based on the pattern of a Sudoku puzzle and quadratic map so that the resulting speech is an input to a proposed encryption algorithm using the threefish algorithm. The proposed algorithm proved to be highly efficient in the compression and encryption of the speech signal based on approved statistical measures

    Hiding text in speech signal using K-means, LSB techniques and chaotic maps

    Get PDF
    In this paper, a new technique that hides a secret text inside a speech signal without any apparent noise is presented. The technique for encoding the secret text is through first scrambling the text using Chaotic Map, then encoding the scraped text using the Zaslavsky map, and finally hiding the text by breaking the speech signal into blocks and using only half of each block with the LSB, K-means algorithms. The measures (SNR, PSNR, Correlation, SSIM, and MSE) are used on various speech files (“.WAV”), and various secret texts. We observed that the suggested technique offers high security (SNR, PSNR, Correlation, and SSIM) of an encrypted text with low error (MSE). This indicates that the noise level in the speech signal is very low and the speech purity is high, so the suggested method is effective for embedding encrypted text into speech files
    corecore